Projector logo
Курси

сміливо заповнюйте заявку

залюбки
допомагаємо
й не рекомендуємо
зайвого

contact-us.Продовжуючи, ви погоджуєтеся з contact-us.Політикою конфіденційності

Dev & Data Science

Machine Learning Beginning

класичний вступний курс із сучасного Machine Learning з акцентом на практику

досвід

знання Python, основ лінійної алгебри та теорії ймовірностей

старт

зима 2025

група

25 місць

Тривалість

3 місяці

якщо ви:

  • 01

    розробник і хочете перейти в data science

  • 02

    data scientist-початківець, ML engineer, data engineer, data analyst 

sFor whom

...тоді це метч!

На курсі Machine Learning Beginning ми розглянемо більшість популярних методів: починаючи від простих (але не менш ефективних) лінійних моделей і дерев рішень, закінчуючи складнішими буcтингами та глибокими нейронними мережами.

Лекції супроводжуватимуться прикладами рішень реальних завдань класифікації, регресії, кластеризації з використанням Python з найпопулярніших сфер застосування ML — автоматичного аналізу текстів, передбачення часових рядів, класифікації картинок.

Після закінчення курсу ви матимете не тільки загальне уявлення про те, чим є Machine Learning, а й глибоке розуміння сучасних інструментів і нюансів їхнього використання. А також отримаєте практичний досвід тренування, валідації та тюнінгу різних моделей машинного навчання.

навички,
які опануємо

hard skills

  • вміння користуватися базовими інструментами для маніпулювання та аналізу даних
  • візуалізація даних для виявлення шаблонів, трендів та інсайтів
  • володіння техніками оцінки моделей машинного навчання
  • володіння техніками clustering та dimensionality reduction, способами їх практичного застосування
  • розуміння архітектури та функціонування базових нейронних мереж
Навички
те, що
треба

soft skills

  • гнучкість у впровадженні змін і коригуванні стратегій
  • аналіз проблем та знаходження ефективних рішень

програма курсу

від основ data science до фреймворків deep learning

вебінари

двічі на тиждень

01.intro to data science
02.classic machine learning
03.intro to deep learning
виділіть час, бо на курсі будуть: живі заняття,real-life завдання,багато фідбеку та ітерацій,курсовий проєкт ісертифікат за здобутки
Studying process

що на вас чекає

навчання по-проджекторному

  • занурення в основи машинного навчання, методи збору, очищення та попередньої обробки даних
  • огляд прикладів і застосувань ML, практичний досвід побудови та навчання базових моделей
  • опанування інструментів для підтримки цілісності даних і ухвалення обґрунтованих бізнес-рішень
  • сертифікат за здобутки — виконання домашок та успішний захист курсового проєкту

платити помісячно

payment option

10 500 грн/міс.

при розтермінуванні вартість курсу 31 500 грн

оплатити за весь курс
зі знижкою

payment option

10 000 грн/міс.

при оплаті одним платежем вартість курсу 30 000 грн

визначилися?
ось як потрапити на курс

  • 1зареєструватися

  • 2заповнити анкету

  • 3пройти відбір

  • 4стати студентом

Вступ

відгуки.
що говорять випускники

Іван Петруха
Іван Петруха
macOS Developer у MacPaw
Я дуже задоволений курсом і знаннями, які я отримав. Віталій зрозуміло пояснював усі теми, а програма курсу вибудована грамотно. Курс дійсно практичний. Я дізнався про сучасні способи роботи з різними завданнями машинного навчання. Фідбек по домашнім роботам — регулярний та вчасний. Вони спроєктовані дуже добре, змушують самостійно розібратися з нюансами теми, що допомагає краще засвоювати нові знання. Лекції — оптимальні за тривалістю, багаті на живе спілкування. Також інструменти та платформи, що застосовувалися на курсі давали змогу завжди бути в курсі останніх новин та отримувати вчасні нагадування про заняття або перевірену домашню роботу.
Олексій Сидорчук
Олексій Сидорчук
Senior Project Officer у The International Foundation for Electoral Systems
Я дуже задоволений проходженням курсу. Отримав багато нової інформації, завдання були корисними і практичними. Сподобалося пояснення матеріалу викладачами, запрошені спікери.
Ігор Козлов
Ігор Козлов
Big Data Tech Lead в Levi9 Ukraine
Добре структурований курс, покриває все необхідне для старту в професії. Куратори дають активний фідбек та допомагають з проєктом, пропонуючи нестандартні та цікаві шляхи вирішення проблеми.
92,7% студентів задоволені навчанням у Проджекторі, а 82,2% студентів вдалося реалізувати цілі за допомогою курсів

*Згідно з результатами дослідження Projector.
У дослідженні взяли участь 567 респондентів
серед випускників курсів 2022 року.

медіа.
дізнайтеся більше

Як Spotify використовує AI, ML та Big Data у системах рекомендацій
Як Spotify використовує AI, ML та Big Data у системах рекомендацій
Projector Mag
Частіше, ніж здається. Де та для чого використовують 
штучний інтелект
Частіше, ніж здається. Де та для чого використовують штучний інтелект
Projector Mag
Як створюють та використовують нейронні мережі: лекція Михайла Константинова
Як створюють та використовують нейронні мережі: лекція Михайла Константинова
Projector Mag
За кафедрою Олександр Руппельт: як будують лінійку Data Science в Projector
За кафедрою Олександр Руппельт: як будують лінійку Data Science в Projector
Projector Mag
10 тис. годин, 6 порад. Як увійти у Data Science і не втекти у паніці
10 тис. годин, 6 порад. Як увійти у Data Science і не втекти у паніці
cтаття

маєте запитання?
підготували відповіді

чи потрібні якісь навички для вступу на курс?
який софт використовуватимемо на курсі?
як відбувається комунікація на курсі та у якому форматі куратор дає фідбек?
чи будуть записуватися вебінари?
чи будуть доступні мені відеозаписи лекцій після завершення курсу?

реєстрація.
перший крок за вами

Продовжуючи, я приймаю умови Публічної оферти та надаю згоду на обробку своїх персональних даних відповідно до Політики конфіденційності

Consultant

Хочете спитати ще щось? Пишіть на hello@prjctr.com.ua або телефонуйте за номером +38 067 418-95-78.

обери мову: